Heterozygous variants of CLPB are a cause of severe congenital neutropenia

Author:

Warren Julia T.1ORCID,Cupo Ryan R.2ORCID,Wattanasirakul Peeradol3,Spencer David H.3ORCID,Locke Adam E.3ORCID,Makaryan Vahagn4,Bolyard Audrey Anna4,Kelley Merideth L.4,Kingston Natalie L.5ORCID,Shorter James2ORCID,Bellanné-Chantelot Christine6ORCID,Donadieu Jean7ORCID,Dale David C.4,Link Daniel C.3ORCID

Affiliation:

1. Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO;

2. Department of Biochemistry and Biophysics, Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA;

3. Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO;

4. Department of Medicine, University of Washington, Seattle, WA;

5. Medical Scientist Training Program, Washington University School of Medicine, St, MO;

6. Département de Génétique, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France; and

7. Sorbonne Université, INSERM, AP-HP, Registre français des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Hôpital Trousseau, Service Hémato Oncologie Pédiatrique, Paris, France

Abstract

Abstract Severe congenital neutropenia is an inborn disorder of granulopoiesis. Approximately one third of cases do not have a known genetic cause. Exome sequencing of 104 persons with congenital neutropenia identified heterozygous missense variants of CLPB (caseinolytic peptidase B) in 5 severe congenital neutropenia cases, with 5 more cases identified through additional sequencing efforts or clinical sequencing. CLPB encodes an adenosine triphosphatase that is implicated in protein folding and mitochondrial function. Prior studies showed that biallelic mutations of CLPB are associated with a syndrome of 3-methylglutaconic aciduria, cataracts, neurologic disease, and variable neutropenia. However, 3-methylglutaconic aciduria was not observed and, other than neutropenia, these clinical features were uncommon in our series. Moreover, the CLPB variants are distinct, consisting of heterozygous variants that cluster near the adenosine triphosphate-binding pocket. Both genetic loss of CLPB and expression of CLPB variants result in impaired granulocytic differentiation of human hematopoietic progenitor cells and increased apoptosis. These CLPB variants associate with wild-type CLPB and inhibit its adenosine triphosphatase and disaggregase activity in a dominant-negative fashion. Finally, expression of CLPB variants is associated with impaired mitochondrial function but does not render cells more sensitive to endoplasmic reticulum stress. Together, these data show that heterozygous CLPB variants are a new and relatively common cause of congenital neutropenia and should be considered in the evaluation of patients with congenital neutropenia.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3