MSPA-DLA++: A Multi-Scale Phase Attention Deep Layer Aggregation for Lesion Detection in Multi-Phase CT Images

Author:

Kitrungrotsakul Titinunt1,Xu Yingying1,Chen Qingqing2,Liu Jing1,Li Yinhao3,Lin Lanfen4,Hu Hongjie2,Tong Ruofeng4,Li Jingsong1,Chen Yen-Wei3

Affiliation:

1. Research Center for Healthcare Data Science, Zhejiang Lab, China

2. Department of Radiology, Sir Run Run Shaw Hospital, China

3. Graduate School of Information Science and Engineering, Ritsumeikan Univ., Japan

4. College of Computer Science and Technology, Zhejiang Univ., China

Abstract

Object detection using convolutional neural networks (CNNs) has achieved high performance and achieved state-of-the-art results with natural images. Compared to natural images, medical images present several challenges for lesion detection. First, the sizes of lesions vary tremendously, from several millimeters to several centimeters. Scale variations significantly affect lesion detection accuracy, especially for the detection of small lesions. Moreover, the effective extraction of temporal and spatial features from multi-phase CT images is also an important issue. In this paper, we propose a group-based deep layer aggregation method with multiphase attention for liver lesion detection in multi-phase CT images. The method, which is called MSPA-DLA++, is a backbone feature extraction network for anchor-free liver lesion detection in multi-phase CT images that addresses scale variations and extracts hidden features from such images. The effectiveness of the proposed method is demonstrated on public datasets (LiTS2017) and our private multiphase dataset. The results of the experiments show that MSPA-DLA++ can improve upon the performance of state-of-the-art networks by approximately 3.7%.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3