Development of a Natural Language Processing System to Identify Clinical Documentation of Electronic Cigarette Use

Author:

Alba Patrick R.12ORCID,Gan Qiwei12,Hu Mengke12,Zhu Shu-Hong3,Sherman Scott E.4,DuVall Scott L.1,Conway Mike4

Affiliation:

1. VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, UT, USA

2. Department of Internal Medicine Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA

3. The Herbert Wertheim School of Public Health and Human Longevity Science

4. Department of Population Health, New York University School of Medicine, NY, USA

Abstract

Electronic Nicotine Delivery Systems (ENDS) use has increased substantially in the United States since 2010. To date, there is limited evidence regarding the nature and extent of ENDS documentation in the clinical note. In this work we investigate the effectiveness of different approaches to identify a patient’s documented ENDS use. We report on the development and validation of a natural language processing system to identify patients with explicit documentation of ENDS using a large national cohort of patients at the United States Department of Veterans Affairs.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3