A Deep Multi-Task Network to Learn Tumor Pathological Representations for Lymph Node Metastasis Prediction

Author:

Hu Danqing1,Liu Bing2,Cheng Lechao1,Guo Rui1,Wang Jin1,Lu Xudong3,Wu Nan2

Affiliation:

1. Research Center for Intelligent Computing Software, Zhejiang Lab

2. Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute

3. College of Biomedical Engineering and Instrumental Science, Zhejiang University

Abstract

Lymph node metastasis is of paramount importance for patient treatment decision-making, prognosis evaluation, and clinical trial enrollment. However, accurate preoperative diagnosis remains challenging. In this study, we proposed a multi-task network to learn the primary tumor pathological features using the pT stage prediction task and leverage these features to facilitate lymph node metastasis prediction. We conducted experiments using electronic medical record data from 681 patients with non-small cell lung cancer. The proposed method achieved a 0.768 area under the receiver operating characteristic curve (AUC) value with a 0.073 standard deviation (SD) and a 0.448 average precision (AP) value with a 0.113 SD for lymph node metastasis prediction, which significantly outperformed the baseline models. Based on the results, we can conclude that the proposed multi-task method can effectively learn representations about tumor pathological conditions to support lymph node metastasis prediction.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3