Rule-Based Text Classification of Dental Diagnosis

Author:

Wang Mei1ORCID,Agrawal Anushka2,Rogers Nicole1,John Vanchit1,Thyvalikakath Thankam13

Affiliation:

1. Indiana University School of Dentistry

2. Indiana University School of Informatics and Computing

3. Center for Biomedical Informatics, Regenstrief Institute, Inc.

Abstract

Unstructured medical records boast an abundance of information that could greatly facilitate medical decision-making and improve patient care. With the development of Natural Language Processing (NLP) methodology, the free-text medical data starts to attract more and more research attention. Most existing studies try to leverage the power of such unstructured data using Machine Learning algorithms, which would usually require a relatively large training set, and high computational capacity. However, when faced with a smaller-scale project, opting for an alternative approach may be more effective and practical. This project proposes an efficient and light-weight rule-based approach to categorize dental diagnosis data. It not only fills the void of dental records in the medical free-text processing area, but also demonstrates that with expertly designed research structure and proper implementation, simple method could achieve our study goal very competently.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3