Automatic Extraction of Skin and Soft Tissue Infection Status from Clinical Notes

Author:

Rhoads Jamie L.W.12ORCID,Christensen Lee3,Westerdahl Skylar1,Stevens Vanessa24,Chapman Wendy W.5,Conway Mike5

Affiliation:

1. Dept. Dermatology, University of Utah, Salt Lake City, UT, USA

2. Informatics, Decision-Enhancement and Analytic Sciences (IDEAS) Center of Innovation, VA Salt Lake City Health Care System, Salt Lake City, UT, USA

3. Dept. Biomedical Informatics, University of Utah, Salt Lake City, UT, USA

4. Div. Epidemiology, University of Utah, Salt Lake City, UT, USA

5. Centre for Digital Transformation of Health, University of Melbourne, VIC, Australia

Abstract

The reliable identification of skin and soft tissue infections (SSTIs) from electronic health records is important for a number of applications, including quality improvement, clinical guideline construction, and epidemiological analysis. However, in the United States, types of SSTIs (e.g. is the infection purulent or non-purulent?) are not captured reliably in structured clinical data. With this work, we trained and evaluated a rule-based clinical natural language processing system using 6,576 manually annotated clinical notes derived from the United States Veterans Health Administration (VA) with the goal of automatically extracting and classifying SSTI subtypes from clinical notes. The trained system achieved mention- and document-level performance metrics of the range 0.39 to 0.80 for mention level classification and 0.49 to 0.98 for document level classification.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural language processing in dermatology: A systematic literature review and state of the art;Journal of the European Academy of Dermatology and Venereology;2024-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3