Artificial Intelligence Approach for Severe Dengue Early Warning System

Author:

Anggraini Ningrum Dina Nur1ORCID,Li Yu-Chuan (Jack)234,Hsu Chien-Yeh56,Solihuddin Muhtar Muhammad7,Pandu Suhito Hanif8

Affiliation:

1. Public Health Department, Universitas Negeri Semarang, Semarang City, Indonesia

2. Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan

3. Department of Dermatology, Wan Fang Hospital, Taipei, Taiwan

4. International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan

5. Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan

6. College of Public Halth, Taipei Medical University, Taipei, Taiwan

7. Graduate Institute of Data Science, Taipei Medical University, Taiwan

8. Semarang City Regional Health Offfice, Semarang City, Taiwan

Abstract

Dengue fever is a viral infectious disease transmitted through mosquito bites, and has symptoms ranging from mild flu-like symptoms to deadly complications. Dengue fever is one of the global burden diseases which annually have 50-100 million cases with 500,000 cases of severe dengue fever, of which 22,000 deaths occur mostly in children. Despite the discovery of vaccines, vector control is still the main approach for prevention efforts. Early detection and accessibility to medical care can reduce severe Dengue mortality rate from 50% to 2%. In the previous study, both statistical and machine learning methods have the potential for predicting a Dengue outbreak, but the study is still fragmented and limited on implementing the generated model into an early warning system application. In this study, we developed an artificial intelligence model with spatiotemporal to predict Dengue outbreak and Dengue incidence case which is ready to be implemented into an early warning system application. Indonesia, especially Semarang City, has experienced an endemic Dengue. We used Semarang City spatiotemporal, meteorological, climatological, and Dengue surveillance epidemiology data from January 2014 to December 2021 in 16 districts of Semarang City. We reviewed 7208 samples from 16 districts and 1 city per week during 8 years. The entire dataset was divided into training (80%) and testing (20%) to develop a prediction model. We used machine learning and Long Short Term Memory (LSTM) to predict Dengue outbreak 1 week before the event for each district. and machine learning to predict Dengue incident cases 1 week before the event for each district. Accuracy, area under the receiver operating characteristic curve (AUROC), precision, recall, and F1 score were considered to evaluate the Dengue outbreak prediction model. The Dengue incidence cases prediction model will evaluate using Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-Squared (R2). Extra Trees Classifier model shown outperform in Dengue outbreak prediction, with accuracy 0.8925, AUROC 0. 9529, Recall 0.6117, precision 0.8880, and F1 score 0.7238. CatBoost Regressor model is shown to outperform in Dengue incidence cases prediction, with R2 0.5621, MAE 0.6304, MSE 1.1997, and RMSE 1.0891. The study proves that Artificial Intelligence (AI) with a spatiotemporal approach can give higher performance in Dengue outbreak and incidence cases prediction. Utilization of AI approaches that are sensitive with spatiotemporal feasibility to implement in Dengue early warning system application may contribute to increase the policy makers and community attention to do accurate community-based vector control.

Publisher

IOS Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3