Prognosticating Fetal Growth Restriction and Small for Gestational Age by Medical History

Author:

Sufriyana Herdiantri12ORCID,Amani Fariska Zata3ORCID,Al Hajiri Aufar Zimamuz Zaman4ORCID,Wu Yu-Wei15ORCID,Su Emily Chia-Yu156ORCID

Affiliation:

1. Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taiwan

2. Department of Medical Physiology, Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, Indonesia

3. Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, Indonesia

4. Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, Indonesia

5. Clinical Big Data Research Center, Taipei Medical University Hospital, Taiwan

6. Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taiwan

Abstract

This study aimed to develop and externally validate a prognostic prediction model for screening fetal growth restriction (FGR)/small for gestational age (SGA) using medical history. From a nationwide health insurance database (n=1,697,452), we retrospectively selected visits of 12-to-55-year-old females to healthcare providers. This study used machine learning (including deep learning) and 54 medical-history predictors. The best model was a deep-insight visible neural network (DI-VNN). It had area under the curve of receiver operating characteristics (AUROC) 0.742 (95% CI 0.734 to 0.750) and a sensitivity of 49.09% (95% CI 47.60% to 50.58% at with 95% specificity). Our model used medical history for screening FGR/SGA with moderate accuracy by DI-VNN. In future work, we will compare this model with those from systematically-reviewed, previous studies and evaluate if this model’s usage impacts patient outcomes.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3