Portable technology for postural control measurement: Comparing head position with center of pressure data

Author:

Harel Daphna1,Lubetzky Anat Vilnai2

Affiliation:

1. Department of Applied Statistics, Social Science, and Humanities, New York University, New York, NY, USA

2. Department of Physical Therapy, New York University, New York, NY, USA

Abstract

BACKGROUND: Standing is a basic human function that healthy adults take for granted, yet it is a complex perceptual-motor process that requires sensation of position and motion from the sensory systems. OBJECTIVE: We assessed agreement between center of pressure data from a laboratory force-platform and head position data from an HTC Vive head-mounted display (HMD) for the evaluation of standing postural control. We investigated the impact of different statistical choices when assessing the relationship between two measurements. Specifically: 1) How does correlation and agreement statistics relate before and after logarithmic transformation? 2) Is there systemic or proportional bias between the force-platform and HMD measurements? METHODS: We tested 37 adults (26 controls, 11 with unilateral vestibular hypofunction) standing on foam, observing a static or dynamic visual scene projected from the HMD. We quantified anterior-posterior and medio-lateral sway via Directional Path, Root Mean Square Velocity, Variance, and Power Spectral Density (PSD) from a force-platform and the HMD. RESULTS: Intra-class correlations (ICCs) were moderate-to-good for the non-transformed data and good-to-excellent after logarithmic transformation for all outcomes except for PSD above 1 Hz. Correlations were higher than ICCs. Bland-Altman plots indicated proportional bias but not after logarithmic transformation. CONCLUSIONS: Both devices correlated linearly, and measure people’s postural responses but cannot be used interchangeably, mostly because they appear to diverge with larger sway as evident on Bland-Altman plots of non-transformed data. Agreement between devices was excellent for low frequency movement but poor for high frequency small corrective movements.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3