AI-based 3D-QSAR model of FDA-approved repurposed drugs for inhibiting sclerostin

Author:

Yadalam Pradeep Kumar1,Anegundi Raghavendra Vamsi1,Ramadoss Ramya2,Shrivastava Deepti3,Almufarrij Raha Ahmed Shamikh4,Srivastava Kumar Chandan56

Affiliation:

1. Department of Periodontics, Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India

2. Department of Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India

3. Preventive Dentistry Department, Periodontics Division, College of Dentistry, Jouf University, Sakaka, Saudi Arabia

4. College of Dentistry, Jouf University, Sakaka, Saudi Arabia

5. Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Oral Medicine and Maxillofacial Radiology Division, College of Dentistry, Jouf University, Sakaka, Saudi Arabia

6. Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India

Abstract

BACKGROUND: Wnt activation promotes bone formation and prevents bone loss. The Wnt pathway antagonist sclerostin and additional anti-sclerostin antibodies were discovered as a result of the development of the monoclonal antibody romosozumab. These monoclonal antibodies greatly increase the risk of cardiac arrest. Three-dimensional quantitative structure-activity relationships (3D-QSAR) predicts biological activities of ligands based on their three-dimensional features by employing powerful chemometric investigations such as artificial neural networks (ANNs) and partial least squares (PLS). OBJECTIVE: In this study, ligand-receptor interactions were investigated using 3D-QSAR Comparative molecular field analysis (CoMFA). Estimates of steric and electrostatic characteristics in CoMFA are made using Lennard-Jones and Coulomb potentials. METHODS: To identify the conditions necessary for the activity of these molecules, fifty Food and Drug Administration (FDA)-approved medications were chosen for 3D-QSAR investigations and done by CoMFA. For QSAR analysis, there are numerous tools available. This study employed Open 3D-QSAR for analysis due to its simplicity of use and capacity to produce trustworthy results. Four tools were used for the analysis on this platform: Py-MolEdit, Py-ConfSearch, and Py-CoMFA. RESULTS: Maps that were generated were used to determine the screen’s r2 (Coefficient of Multiple Determinations) value and q2 (correlation coefficient). These numbers must be fewer than 1, suggesting a good, trustworthy model. Cross-validated (q2) 0.532 and conventional (r2) correlation values of 0.969 made the CoMFA model statistically significant. The model showed that hydroxamic acid inhibitors are significantly more sensitive to the steric field than the electrostatic field (70%) (30%). This hypothesis states that steric (43.1%), electrostatic (26.4%), and hydrophobic (20.3%) qualities were important in the design of sclerostin inhibitors. CONCLUSION: With 3D-QSAR and CoMFA, statistically meaningful models were constructed to predict ligand inhibitory effects. The test set demonstrated the model’s robustness. This research may aid in the development of more effective sclerostin inhibitors that are synthesised using FDA-approved medications.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3