Affiliation:
1. Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
2. Departamento de Química, Universidad Militar Nueva Granada, Cajicá, Colombia
Abstract
Background: Redox active metal cations, such as Cu2 +, have been related to induce amyloid plaques formation and oxidative stress, which are two of the key events in the development of Alzheimer’s disease (AD) and others metal promoted neurodegenerative diseases. In these oxidative events, standard reduction potential (SRP) is an important property especially relevant in the reactive oxygen species formation. Objective: The SRP is not usually considered for the selection of drug candidates in anti-AD treatments. In this work, we present a computational protocol for the selection of multifunctional ligands with suitable metal chelating, pharmacokinetics, and redox properties. Methods: The filtering process is based on quantum chemical calculations and the use of in silico tools. Calculations of SRP were performed by using the M06-2X density functional and the isodesmic approach. Then, a virtual screening technique (VS) was used for similar structure search. Results: Protocol application allowed the assessment of chelating, drug likeness, and redox properties of copper ligands. Those molecules showing the best features were selected as molecular scaffolds for a VS procedure in order to obtain related compounds. After applying this process, we present a list of candidates with suitable properties to prevent the redox reactions mediated by copper(II) ion. Conclusion: The protocol incorporates SRP in the filtering stage and can be effectively used to obtain a set of potential drug candidates for AD treatments.
Subject
Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献