A novel second-order cone programming support vector machine model for binary data classification

Author:

Dong Guishan1,Mu Xuewen1

Affiliation:

1. School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi, China

Abstract

The support vector machine is a classification approach in machine learning. The second-order cone optimization formulation for the soft-margin support vector machine can ensure that the misclassification rate of data points do not exceed a given value. In this paper, a novel second-order cone programming formulation is proposed for the soft-margin support vector machine. The novel formulation uses the l2-norm and two margin variables associated with each class to maximize the margin. Two regularization parameters α and β are introduced to control the trade-off between the maximization of margin variables. Numerical results illustrate that the proposed second-order cone programming formulation for the soft-margin support vector machine has a better prediction performance and robustness than other second-order cone programming support vector machine models used in this article for comparision.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference17 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3