Infrared and visible image fusion using dual-tree complex wavelet transform and convolutional sparse representation

Author:

Gao Chengrui1,Liu Feiqiang1,Yan Hua1

Affiliation:

1. Sichuan University, The College of Electronics Information and Engineering, Chengdu, China

Abstract

Infrared and visible image fusion refers to the technology that merges the visual details of visible images and thermal feature information of infrared images; it has been extensively adopted in numerous image processing fields. In this study, a dual-tree complex wavelet transform (DTCWT) and convolutional sparse representation (CSR)-based image fusion method was proposed. In the proposed method, the infrared images and visible images were first decomposed by dual-tree complex wavelet transform to characterize their high-frequency bands and low-frequency band. Subsequently, the high-frequency bands were enhanced by guided filtering (GF), while the low-frequency band was merged through convolutional sparse representation and choose-max strategy. Lastly, the fused images were reconstructed by inverse DTCWT. In the experiment, the objective and subjective comparisons with other typical methods proved the advantage of the proposed method. To be specific, the results achieved using the proposed method were more consistent with the human vision system and contained more texture detail information.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference40 articles.

1. Densefuse: A fusion approach to infrared and visible images;Li;IEEE Transactions on Image Processing,2018

2. Pixel-level image fusion: A survey of the state of the art;Li;Information Fusion,2017

3. Infrared and visible image fusion via gradient transfer and total variation minimization;Ma;Information Fusion,2016

4. A novel multi-modality image fusion method based on image decomposition and sparse representation;Zhu;Information Sciences,2018

5. Stathaki T. , Image Fusion: Algorithms and Applications, Elsevier Science (2011), 119–138.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3