Complex bipolar fuzzy sets: An application in a transport’s company

Author:

Gulistan Muhammad1,Yaqoob Naveed2,Elmoasry Ahmed3,Alebraheem Jawdat3

Affiliation:

1. Department of Mathematics, Hazara University, Mansehra, Pakistan

2. Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan

3. Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Zulfi, Saudi Arabia

Abstract

Zadeh’s fuzzy sets are very useful tool to handle imprecision and uncertainty, but they are unable to characterize the negative characteristics in a certain problem. This problem was solved by Zhang et al. as they introduced the concept of bipolar fuzzy sets. Thus, fuzzy set generalizes the classical set and bipolar fuzzy set generalize the fuzzy set. These theories are based on the set of real numbers. On the other hand, the set of complex numbers is the generalization of the set of real numbers so, complex fuzzy sets generalize the fuzzy sets, with wide range of values to handle the imprecision and uncertainty. So, in this article, we study complex bipolar fuzzy sets which is the generalization of bipolar fuzzy set and complex fuzzy set with wide range of values by adding positive membership function and negative membership function to unit circle in the complex plane, where one can handle vagueness in a much better way as compared to bipolar fuzzy sets. Thus this paper leads us towards a new direction of research, which has many applications in different directions. We develop the notions of union, intersection, complement, Cartesian product and De-Morgan’s laws of complex bipolar fuzzy sets. Furthermore, we develop the complex bipolar fuzzy relations, fundamental operations on complex bipolar fuzzy matrices and some operators of complex bipolar fuzzy matrices. We also discuss the distance measure on complex bipolar fuzzy sets and complex bipolar fuzzy aggregation operators. Finally, we apply the developed approach to a numerical problem with the algorithm.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference36 articles.

1. fuzzy Sets;Zadeh;Inform and Control,1965

2. intuitionistic fuzzy Sets;Atanassov;Fuzzy Sets and Systems,1986

3. More on intuitionistic fuzzy sets;Atanassov;Fuzzy Sets and Systems,1989

4. Smarandache F. , A Unifying Field in Logics, Neutrosophy: neutrosophic Probability, Set and Logic, American Research Press, Rehoboth. (1999).

5. Islam Mondal and T. Kumar Roy, Intuitionistic fuzzy Soft Matrix Theory;Jalilul;Mathematics and Statistics,2013

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3