ActorNode2Vec: An Actor-based solution for Node Embedding over large networks

Author:

Lombardo Gianfranco1,Poggi Agostino1

Affiliation:

1. Department of Engineering and Architecture, University of Parma, Italy

Abstract

 The application of Machine Learning techniques over networks, such as prediction tasks over nodes and edges, is becoming often crucial in the analysis of Complex systems in a wide range of research fields. One of the enabling technologies in that sense is represented by Node Embedding, which enables us to learn features automatically over the network. Among the different approaches proposed in the literature, the most promising are DeepWalk and Node2Vec, where the embedding is computed by combining random walks and neural language models. However, characteristic limitations with these techniques are related to memory requirements and time complexity. In this paper, we propose a distributed and scalable solution, named ActorNode2vec, that keeps the best advantages of Node2Vec and overcomes the limitations with the adoption of the actor model to distribute the computational load. We demonstrate the efficacy of this approach with a large network by analyzing the sensitivity of walk length and number of walks parameters and make a comparison also with Deep walk and an Apache Spark distributed implementation of Node2Vec. Results show that with ActorNode2vec computational times are drastically reduced without losing embedding quality and overcoming memory issues.

Publisher

IOS Press

Subject

Artificial Intelligence

Reference26 articles.

1. A large-scale evaluation of computational protein function prediction;Radivojac;Nature Methods,2013

2. Dynamics of cluster structures in a financial market network;Kocheturov;Physica A: Statistical Mechanics and its Applications,2014

3. A combined approach for the analysis of support groups on facebook-the case of patients of hidradenitis suppurativa;Lombardo;Multimedia Tools and Applications,2019

4. A neural probabilistic language model;Bengio;Journal of Machine Learning Research

5. Distributed representations of words and phrases and their compositionality;Mikolov;Advances in Neural Information Processing Systems,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3