Application of improved CNN-based face detection technology in public administration

Author:

Zhao Zhao12

Affiliation:

1. School of Public Policy and Management (School of Emergency Management), China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. General Affairs Department, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Abstract

In public management, intelligent face recognition detection technology plays a very crucial role, which can greatly improve the efficiency of public management and reduce the workload of staff. To address the shortcomings of traditional face detection algorithms such as low detection efficiency and easy overfitting, a face detection model based on convolutional neural network (CNN) was proposed in this study, and the structure of CNN was optimized to enhance the accuracy and efficiency of the proposed face detection model. To solve the face detection errors caused by illumination differences, a light compensation strategy was proposed to pre-process the data; meanwhile, a Gaussian curvature filtering algorithm was used to enhance the face image and improve the subsequent detection accuracy. On this basis, a face detection model based on improved CNN was designed in this study. Experiments showed that the accuracy of the model reached 99.86% with high accuracy and efficiency, indicating that such method can improve the efficiency of public management and has good application prospects in access control and check-in systems.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3