Interrogation of Dystrophin and Dystroglycan Complex Protein Turnover After Exon Skipping Therapy

Author:

Novak James S.123,Spathis Rita4,Dang Utkarsh J.45,Fiorillo Alyson A.123,Hindupur Ravi1,Tully Christopher B.1,Mázala Davi A.G.16,Canessa Emily4,Brown Kristy J.7,Partridge Terence A.1,Hathout Yetrib4,Nagaraju Kanneboyina24

Affiliation:

1. Center for Genetic Medicine Research, Children’sResearch Institute, Children’s National Hospital, Washington, DC, USA

2. Department of Genomics and PrecisionMedicine, The George Washington University School of Medicine and Health Sciences, Washington DC, USA

3. Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington DC, USA

4. School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY USA

5. Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada

6. Department of Kinesiology, College of Health Professionals, Towson University, Towson, MD, USA

7. Solid Biosciences Inc, Cambridge, MA, USA

Abstract

Recently, the Food and Drug Administration granted accelerated approvals for four exon skipping therapies –Eteplirsen, Golodirsen, Viltolarsen, and Casimersen –for Duchenne Muscular Dystrophy (DMD). However, these treatments have only demonstrated variable and largely sub-therapeutic levels of restored dystrophin protein in DMD patients, limiting their clinical impact. To better understand variable protein expression and the behavior of truncated dystrophin protein in vivo, we assessed turnover dynamics of restored dystrophin and dystrophin glycoprotein complex (DGC) proteins in mdx mice after exon skipping therapy, compared to those dynamics in wild type mice, using a targeted, highly-reproducible and sensitive, in vivo stable isotope labeling mass spectrometry approach in multiple muscle tissues. Through statistical modeling, we found that restored dystrophin protein exhibited altered stability and slower turnover in treated mdx muscle compared with that in wild type muscle (∼44 d vs. ∼24 d, respectively). Assessment of mRNA transcript stability (quantitative real-time PCR, droplet digital PCR) and dystrophin protein expression (capillary gel electrophoresis, immunofluorescence) support our dystrophin protein turnover measurements and modeling. Further, we assessed pathology-induced muscle fiber turnover through bromodeoxyuridine (BrdU) labeling to model dystrophin and DGC protein turnover in the context of persistent fiber degeneration. Our findings reveal sequestration of restored dystrophin protein after exon skipping therapy in mdx muscle leading to a significant extension of its half-life compared to the dynamics of full-length dystrophin in normal muscle. In contrast, DGC proteins show constant turnover attributable to myofiber degeneration and dysregulation of the extracellular matrix (ECM) in dystrophic muscle. Based on our results, we demonstrate the use of targeted mass spectrometry to evaluate the suitability and functionality of restored dystrophin isoforms in the context of disease and propose its use to optimize alternative gene correction strategies in development for DMD.

Publisher

IOS Press

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3