Optimized Molecular Interaction Networks for the Study of Skeletal Muscle

Author:

Morgan Stephen1,Malatras Apostolos2,Duguez Stephanie1,Duddy William1

Affiliation:

1. Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, Northern Ireland, UK

2. Department of Biological Sciences, Molecular Medicine Research Center, University of Cyprus, University Avenue, Nicosia, Cyprus

Abstract

Background: Molecular interaction networks (MINs) aim to capture the complex relationships between interacting molecules within a biological system. MINs can be constructed from existing knowledge of molecular functional associations, such as protein-protein binding interactions (PPI) or gene co-expression, and these different sources may be combined into a single MIN. A given MIN may be more or less optimal in its representation of the important functional relationships of molecules in a tissue. Objective: The aim of this study was to establish whether a combined MIN derived from different types of functional association could better capture muscle-relevant biology compared to its constituent single-source MINs. Methods: MINs were constructed from functional association databases for both protein-binding and gene co-expression. The networks were then compared based on the capture of muscle-relevant genes and gene ontology (GO) terms, tested in two different ways using established biological network clustering algorithms. The top performing MINs were combined to test whether an optimal MIN for skeletal muscle could be constructed. Results: The STRING PPI network was the best performing single-source MIN among those tested. Combining STRING with interactions from either the MyoMiner or CoXPRESSdb gene co-expression sources resulted in a combined network with improved performance relative to its constituent networks. Conclusion: MINs constructed from multiple types of functional association can better represent the functional relationships of molecules in a given tissue. Such networks may be used to improve the analysis and interpretation of functional genomics data in the study of skeletal muscle and neuromuscular diseases. Networks and clusters described by this study, including the combinations of STRING with MyoMiner or with CoXPRESSdb, are available for download from https://www.sys-myo.com/myominer/download.php.

Publisher

IOS Press

Subject

Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3