Soft computing and image processing techniques for COVID-19 prediction in lung CT scan images

Author:

Appari Neeraj Venkatasai L.,Kanojia Mahendra G.

Abstract

COVID-19 is a contagious respiratory illness that can be passed from person to person. Because it affects the lungs, damages blood arteries, and causes cardiac problems, COVID-19 must be diagnosed quickly. The reverse transcriptase polymerase chain reaction (RT-PCR) is a method for detecting COVID-19, but it is time consuming and labor expensive, as well as putting the person collecting the sample in danger. As a result, clinicians prefer to use CT scan and Xray images. COVID-19 classification can be done manually, however AI makes the process go faster. AI approaches include image processing, machine learning, and deep learning. An AI model is required to diagnose COVID-19, and a dataset is necessary to train that model. A dataset consists of the information from which the model is trained. This paper consists of the review of different image processing, machine learning and deep learning papers proposed by different researchers. As well as models based on deep learning and pretrained model using gradient boosting algorithm The goal of this paper is to provide information for future researchers to work with.

Publisher

IOS Press

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel brightness preserving gradient based joint histogram equalization technique for mammogram image contrast enhancement;International Journal of Hybrid Intelligent Systems;2024-06-24

2. Vision transformer-convolution for breast cancer classification using mammography images: A comparative study;International Journal of Hybrid Intelligent Systems;2024-06-11

3. COVID-19 lateral flow test image classification using deep CNN and StyleGAN2;Frontiers in Artificial Intelligence;2024-01-29

4. Visual Communication Optimization Method Based on Image Processing Technology;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3