Combined optimization strategy: CUBW for load balancing in software defined network

Author:

Sharma Sonam1,Seth Dambarudhar1,Kapil Manoj2

Affiliation:

1. Department of Computer Science and Engineering, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, Uttar Pradesh 201204, India

2. Faculty of Engineering & Technology, Swami Vivekanand Subharti University, Swami Vivekananda Subharti University, NH-58, Delhi-Haridwar Bypass Road 250005, India

Abstract

Software Defined Network (SDN) facilitates a centralized control management of devices in network, which solves many issues in the old network. However, as the modern era generates a vast amount of data, the controller in an SDN could become overloaded. Numerous investigators have offered their opinions on how to address the issue of controller overloading in order to resolve it. Mostly the traditional models consider two or three parameters to evenly distribute the load in SDN, which is not sufficient for precise load balancing strategy. Hence, an effective load balancing model is in need that considers different parameters. Considering this aspect, this paper presents a new load balancing model in SDN is introduced by following three major phases: (a) work load prediction, (b) optimal load balancing, and (c) switch migration. Initially, work load prediction is done via improved Deep Maxout Network. COA and BWO are conceptually combined in the proposed hybrid optimization technique known as Coati Updated Black Widow (CUBW). Then, the optimal load balancing is done via hybrid optimization named Coati Updated Black Widow (CUBW) Optimization Algorithm. The optimal load balancing is done by considering migration time, migration cost, distance and load balancing parameters like server load, response time and turnaround time. Finally, switch migration is carried out by considering the constraints like migration time, migration cost, and distance. The migration time of the proposed method achieves lower value, which is 27.3%, 40.8%, 24.40%, 41.8%, 42.8%, 42.2%, 40.0%, and 41.6% higher than the previous models like BMO, BES, AOA, TDO, CSO, GLSOM, HDD-PLB, BWO and COA respectively. Finally, the performance of proposed work is validated over the conventional methods in terms of different analysis.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3