Hyperspectral crop image classification via ensemble of classification model with optimal training

Author:

Lavanya P Venkata1,Tripathi Mukesh Kumar2,E P Hemand3,K Sangeetha4,Ramesh Janjhyam Venkata Naga5

Affiliation:

1. Department of Electronics and Communications Engineering, TKR College of Engineering and Technology, Hyderabad, Telangana 500097, India

2. Department of Computer Science & Engineering, Vardhaman College of Engineering, Hyderabad, Telegana, India

3. NIT Calicut, Kerala, India

4. Department of Computer Science & Engineering, Panimalar Engineering College, Poonamallee, Chennai, Tamil Nadu 600123, India

5. Department of Computer Science & Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist, Andhra Pradesh – 522302, India

Abstract

Agriculture is a significant source of income, and categorizing the crop has turned into vital factor that aids more in the crop production sector. Traditionally, crop development stage determination is done manually by eye inspection. However, producing high-quality crop type maps using modern approaches remains difficult. In this paper, the hyperspectral crop image classification model is proposed that includes four stages, they are (a) preprocessing, (b) segmentation, (c) feature extraction and (d) classification. In the preprocessing step, the hyperspectral image is provided as input, where the filtering process will carried out using median filtering. The filtered image is then used as the segmentation’s input. The image is segmented in the segmentation step using the enhanced entropy-based fuzzy c-means technique. Subsequently, spectral spatial features and vegetation index-based features are derived from segmented images. The final step is the classification, where the ensemble of classification model will be used that includes models like Convolutional Neural Networks (CNN), Deep Maxout (DMO), Recurrent Neural Networks (RNN), and Bidirectional Gated Recurrent Unit (Bi-GRU), respectively. The proposed Self Improved Tasmanian devil Optimization (SI-TDO) approach has optimally adjusted the Bi-GRU model’s training weights to enhance ensemble classification performance. Finally, the effectiveness of the proposed SI-TDO method compared to the traditional algorithm is examined for several metrics. The SI-TDO obtained the greatest accuracy of 94.68% in training rate 80, while other existing models have the lowest ratings.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3