Constructing ensembles of dispatching rules for multi-objective tasks in the unrelated machines environment

Author:

\DJurasević Marko1,Gil-Gala Francisco J.2,Jakobović Domagoj1

Affiliation:

1. Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

2. Department of Computer Science, University of Oviedo, Oviedo, Spain

Abstract

Scheduling is a frequently studied combinatorial optimisation problem that often needs to be solved under dynamic conditions and to optimise multiple criteria. The most commonly used method for solving dynamic problems are dispatching rules (DRs), simple constructive heuristics that build the schedule incrementally. Since it is difficult to design DRs manually, they are often created automatically using genetic programming. Although such rules work well, their performance is still limited and various methods, especially ensemble learning, are used to improve them. So far, ensembles have only been used in the context of single-objective scheduling problems. This study aims to investigate the possibility of constructing ensembles of DRs for solving multi-objective (MO) scheduling problems. To this end, an existing ensemble construction method called SEC is adapted by extending it with non-dominated sorting to construct Pareto fronts of ensembles for a given MO problem. In addition, the algorithms NSGA-II and NSGA-III were adapted to construct ensembles and compared with the SEC method to demonstrate their effectiveness. All methods were evaluated on four MO problems with different number of criteria to be optimised. The results show that ensembles of DRs achieve better Pareto fronts compared to individual DRs. Moreover, the results show that SEC achieves equally good or even slightly better results than NSGA-II and NSGA-III when constructing ensembles, while it is simpler and slightly less computationally expensive. This shows the potential of using ensembles to increase the performance of individual DRs for MO problems.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science,Software

Reference64 articles.

1. Pinedo ML. Scheduling. Springer US; 2012.

2. Evolutionary Scheduling: A Review;Hart;Genetic Programming and Evolvable Machines,2005

3. A survey of dispatching rules for the dynamic unrelated machines environment;urasević;Expert Systems with Applications,2018

4. Poli R, Langdon WB, McPhee NF. A Field Guide to Genetic Programming. Lulu Enterprises, UK Ltd; 2008.

5. Genetic Algorithm to Evolve Ensembles of Rules for On-Line Scheduling on Single Machine with Variable Capacity;Gil-Gala;From Bioinspired Systems and Biomedical Applications to Machine Learning,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3