Affiliation:
1. Guangdong Provincial Key Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, China
2. Laboratory of Green Energy, Electric Power Measurement Digitization, China
Abstract
Edge computing has emerged for meeting the ever-increasing computation demands from delay-sensitive Internet of Things (IoT) applications. However, the computing capability of an edge device, including a computing-enabled end user and an edge server, is insufficient to support massive amounts of tasks generated from IoT applications. In this paper, we aim to propose a two-tier end-edge collaborative computation offloading policy to support as much as possible computation-intensive tasks while making the edge computing system strongly stable. We formulate the two-tier end-edge collaborative offloading problem with the objective of minimizing the task processing and offloading cost constrained to the stability of queue lengths of end users and edge servers. We perform analysis of the Lyapunov drift-plus-penalty properties of the problem. Then, a cost-aware computation offloading (CACO) algorithm is proposed to find out optimal two-tier offloading decisions so as to minimize the cost while making the edge computing system stable. Our simulation results show that the proposed CACO outperforms the benchmarked algorithms, especially under various number of end users and edge servers.
Subject
Computational Mathematics,Computer Science Applications,General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献