A Deep Local and Global Scene-Graph Matching for Image-Text Retrieval

Author:

Nguyen Manh-Duy1,Nguyen Binh T.234,Gurrin Cathal1

Affiliation:

1. School of Computing, Dublin, Ireland

2. AISIA Research Lab

3. University of Science, Ho Chi Minh City, Vietnam

4. Vietnam National University Ho Chi Minh City, Vietnam

Abstract

Conventional approaches to image-text retrieval mainly focus on indexing visual objects appearing in pictures but ignore the interactions between these objects. Such objects occurrences and interactions are equivalently useful and important in this field as they are usually mentioned in the text. Scene graph presentation is a suitable method for the image-text matching challenge and obtained good results due to its ability to capture the inter-relationship information. Both images and text are represented in scene graph levels and formulate the retrieval challenge as a scene graph matching challenge. In this paper, we introduce the Local and Global Scene Graph Matching (LGSGM) model that enhances the state-of-the-art method by integrating an extra graph convolution network to capture the general information of a graph. Specifically, for a pair of scene graphs of an image and its caption, two separate models are used to learn the features of each graph’s nodes and edges. Then a Siamese-structure graph convolution model is employed to embed graphs into vector forms. We finally combine the graph-level and the vector-level to calculate the similarity of this image-text pair. The empirical experiments show that our enhancement with the combination of levels can improve the performance of the baseline method by increasing the recall by more than 10% on the Flickr30k dataset. Our implementation code can be found at https://github.com/m2man/LGSGM.

Publisher

IOS Press

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SEMScene: Semantic-Consistency Enhanced Multi-Level Scene Graph Matching for Image-Text Retrieval;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-08-16

2. Scene Graph based Fusion Network for Image-Text Retrieval;2023 IEEE International Conference on Multimedia and Expo (ICME);2023-07

3. Multi-view inter-modality representation with progressive fusion for image-text matching;Neurocomputing;2023-05

4. Cross-modal Semantic Enhanced Interaction for Image-Sentence Retrieval;2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2023-01

5. Unifying knowledge iterative dissemination and relational reconstruction network for image–text matching;Information Processing & Management;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3