Predicting models for arm impairment: External validation of the Scandinavian models and identification of new predictors in post-acute stroke settings

Author:

García-Rudolph Alejandro123ORCID,Soriano Ignasi123,Becerra Helard4,Madai Vince Istvan567,Frey Dietmar5,Opisso Eloy123,Tormos Josep María123,Bernabeu Montserrat123

Affiliation:

1. Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain

2. Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain

3. Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain

4. School of Computer Science, University College Dublin, Dublin, Ireland

5. CLAIM Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany

6. QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany

7. School of Computing and Digital Technology, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, Birmingham, UK

Abstract

BACKGROUND: Post-stroke arm impairment at rehabilitation admission as predictor of discharge arm impairment was consistently reported as extremely useful. Several models for acute prediction exist (e.g. the Scandinavian), though lacking external validation and larger time-window admission assessments. OBJECTIVES: (1) use the 33 Fugl-Meyer Assessment-Upper Extremity (FMA-UE) individual items to predict total FMA-UE score at discharge of patients with ischemic stroke admitted to rehabilitation within 90 days post-injury, (2) use eight individual items (seven from the Scandinavian study plus the top predictor item from objective 1) to predict mild impairment (FMA-UE≥48) at discharge and (3) adjust the top three models from objective 2 with known confounders. METHODS: This was an observational study including 287 patients (from eight settings) admitted to rehabilitation (2009-2020). We applied regression models to candidate predictors, reporting adjusted R2, odds ratios and ROC-AUC using 10-fold cross-validation. RESULTS: We achieved good predictive power for the eight item-level models (AUC: 0.70-0.82) and for the three adjusted models (AUC: 0.85-0.88). We identified finger mass flexion as new item-level top predictor (AUC:0.88) and time to admission (OR = 0.9(0.9;1.0)) as only common significant confounder. CONCLUSION: Scandinavian item-level predictors are valid in a different context, finger mass flexion outperformed known predictors, days-to-admission predict discharge mild arm impairment.

Publisher

IOS Press

Subject

Neurology (clinical),Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation

Reference39 articles.

1. Estimating the minimal clinically important difference of an upper extremity recovery measure in subacute stroke patients;Arya;Top Stroke Rehabil,2011

2. Premotor dorsal white matter integrity for the prediction of upper limb motor impairment after stroke;Boccuni;Sci Rep,2019

3. Measure of functional independence dominates discharge outcome prediction after inpatient rehabilitation for stroke;Brown;Stroke,2015

4. caret: Classification and Regression Training. Misc functions for training and plotting classification and regression models. https://cran.r-project.org/web/packages/caret/index.html (last accessed March, 2023).

5. Transcultural translation and validation of Fugl-Meyer assessment to Italian;Cecchi;Disabil Rehabil,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3