Cortical activation in robot-assisted dynamic and static resistance training combining VR interaction: An fNIRS based pilot study

Author:

Zheng Jinyu12,He Wanying12,Ma Qiqi12,Cai Wenqian12,Li Sujiao123,Yu Hongliu123

Affiliation:

1. Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China

2. Shanghai Engineering Research Center of Assistive Devices, Shanghai, China

3. Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China

Abstract

BACKGROUND: There are few isometric training systems based on upper limb rehabilitation robots. Its efficacy and neural mechanism are not well understood. OBJECTIVE: This study aims to investigate the cortex activation of dynamic resistance and static (isometric) training based on upper limb rehabilitation robot combined with virtual reality (VR) interaction by using functional near-infrared spectroscopy (fNIRS). METHODS: Twenty subjects were included in this study. The experiment adopts the block paradigm design. Experiment in dynamic and static conditions consisted of three trials, each consisting of task (60 s)-rest (40 s). The neural activities of the sensorimotor cortex (SMC), premotor cortex (PMC) and prefrontal cortex (PFC) were measured. The cortex activation and functional connectivity (FC) were analyzed. RESULTS: Both the dynamic and static training can activate SMC, PMC, and PFC. In SMC and PMC, the activation of static training was stronger than dynamic training, there were significant differences between the two modes of each region of interest (ROI) (p < 0.05) (SMC: p = 0.022, ES = 0.72, PMC: p = 0.039, ES = 0.63). Besides, the FC between all ROIs of the static training was stronger than that of the dynamic training. CONCLUSION: The static training based on upper limb rehabilitation robot may better facilitate the cortical activation associated with motor control.

Publisher

IOS Press

Subject

Neurology (clinical),Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3