Neural axiom network for knowledge graph reasoning

Author:

Li Juan1,Chen Xiangnan1,Yu Hongtao1,Chen Jiaoyan2,Zhang Wen3

Affiliation:

1. College of Computer Science and Technology, Zhejiang University, 38 Zheda Rd, Hangzhou, China

2. Department of Computer Science, University of Oxford, 15 Parks Rd, Oxford OX1 3QD, UK

3. School of Software Technology, Zhejiang University, 1689 Jiangnan Rd, Ningbo, China

Abstract

Knowledge graph reasoning (KGR) aims to infer new knowledge or detect noises, which is essential for improving the quality of knowledge graphs. Recently, various KGR techniques, such as symbolic- and embedding-based methods, have been proposed and shown strong reasoning ability. Symbolic-based reasoning methods infer missing triples according to predefined rules or ontologies. Although rules and axioms have proven effective, it is difficult to obtain them. Embedding-based reasoning methods represent entities and relations as vectors, and complete KGs via vector computation. However, they mainly rely on structural information and ignore implicit axiom information not predefined in KGs but can be reflected in data. That is, each correct triple is also a logically consistent triple and satisfies all axioms. In this paper, we propose a novel NeuRal Axiom Network (NeuRAN) framework that combines explicit structural and implicit axiom information without introducing additional ontologies. Specifically, the framework consists of a KG embedding module that preserves the semantics of triples and five axiom modules that encode five kinds of implicit axioms. These axioms correspond to five typical object property expression axioms defined in OWL2, including ObjectPropertyDomain, ObjectPropertyRange, DisjointObjectProperties, IrreflexiveObjectProperty and AsymmetricObjectProperty. The KG embedding module and axiom modules compute the scores that the triple conforms to the semantics and the corresponding axioms, respectively. Compared with KG embedding models and CKRL, our method achieves comparable performance on noise detection and triple classification and achieves significant performance on link prediction. Compared with TransE and TransH, our method improves the link prediction performance on the Hits@1 metric by 22.0% and 20.8% on WN18RR-10% dataset, respectively.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3