Affiliation:
1. Saveetha Engineering College, Thandalam, Chennai – 602105, India
2. Panimalar Institute of Technology, Chennai, India
3. St. Joseph’sCollege of Engineering, Chennai – 600119, India
Abstract
The use of wireless sensor networks (WSNs), in several sectors, including communication, agriculture, manufacturing, smart health, monitoring and surveillance is increasing in R&D. An IoT-based WSN in agricultural production has been effective in detecting yield conditions and automating agriculture precision by using multiple sensors. To collect data on crops, plants, temperature estimates and stickiness as well as to boost yields by making smart agriculture decisions, they are deployed in rural regions. Sensors, on the other hand, are constrained by their inability to handle, store, communicate, and process large amounts of data due to a lack of available resources. Additionally, the safety and security of the IoT-based agricultural sensors against damaging competitors are crucial factors, as is their efficacy. One idea put up in this article is to employ a WSN structure based on the Internet of Things (IoT) for smart agriculture. The selection of group leaders is also based on data collected by rural sensors and multi-rules choice capacity. A transmission link’s SNR (signal-to-noise ratio) is used to gauge the intensity of signals being sent over it in order to guarantee accurate and timely data transfer. In addition, the direct congruential generator is repeated in order to enable data flow from agricultural sensors to central stations (BS). Compared with previous arrangements, smart agriculture obtained an average of 13.5 percent in the organisation throughput, 38.5 percent in the parcel drop percentage, 13.5 percent in the organisation inactivity, and 16 percent in energy usage. Comparatively speaking, this is a huge step forward.
Subject
Pollution,Water Science and Technology