Enhanced solar power prediction using CNN and ladybug beetle optimization algorithm

Author:

Parida Raj Kumar,Roy Monideepa,Parida Ajaya Kumar,Khan Asif Uddin

Abstract

Integrating renewable energy sources like solar power into the grid necessitates accurate prediction methods to optimize their utilization. This paper proposes a novel approach that combines Convolutional Neural Networks (CNN) with the Ladybug Beetle Optimization (LBO) algorithm to forecast solar power generation efficiently. Many traditional models, for predicting power often struggle with accuracy and efficiency when it comes to computations. To overcome these challenges, we utilize the capabilities of CNN to extract features and recognize patterns from past irradiance data. The CNN structure is skilled at capturing relationships within the input data allowing it to detect patterns that are natural in solar irradiance changes. Additionally, we apply the LBO algorithm inspired by how ladybug beetles search for food to tune the parameters of the CNN model. LBO imitates how ladybug beetles explore to find solutions making it effective in adjusting the hyperparameters of the CNN. This research utilizes a dataset with solar irradiance readings to train and test the proposed CNN-LBO framework. The performance of this model is assessed using evaluation measures, like Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), MAPE, and R2 value. The experimental outcomes indicate that our hybrid CNN-LBO method surpasses existing techniques in terms of efficiency.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3