Multi-time scale economic regulation model of virtual power plant considering multiple uncertainties of source, load and storag

Author:

Dou Zhenlan1,Zhang Chunyan1,Duan Chuanxu2,Wen Xuan2,Sun Chen1

Affiliation:

1. State Grid Shanghai Municipal Electric Power Company, Shanghai, China

2. School of Information Engineering, Nanchang University, Nanchang, Jiangxi, China

Abstract

A novel multi-stage time scale economic dispatch scheme is proposed for virtual power plants, taking into account the uncertainties arising from the connection of distribution network sources. This research introduces specific scheduling schemes tailored to various time scales within distribution networks, including a fuzzy optimized day ahead scheduling scheme, an intra-day scheduling scheme combined with Deep Q Network, and an adaptive optimized real-time scheduling scheme. This plan mainly considers the impact of photovoltaic output and conducts scheduling one day in advance through fuzzy optimization. In the intraday scheduling, different strategies were adopted in the study. By combining with Deep Q Network, research on scheduling for intraday demand within the power system. The analysis is conducted through rigorous modeling. Experimental tests were conducted to evaluate the performance of the proposed schemes. The day ahead dispatching primarily considers the impact of photovoltaic output and calculates the cost associated with each link in the grid under three different meteorological conditions. In the intra-day scheduling, the total costs for Scenario 1, Scenario 2, and Scenario 3 are found to be 34,724.5 yuan, 36,296.5 yuan, and 33,275.8 yuan, respectively. Notably, strategies 1 and 2 demonstrate lower costs compared to the pre-day scheduling, with the exception of Scenario 3. In real-time scheduling, considering the matching between sources and sources, the matching rate between sources and sources can be maintained at over 95%, and the stability and cost of the power grid have significantly decreased. In summary, by proposing a multi-stage time scale economic scheduling scheme, this study fully considers the uncertainty of the power supply of the distribution network access, as well as the different needs of day, day and real-time scheduling, providing an effective solution for the power dispatching of virtual power plants and providing important technical support for the reliability and economy of the power system.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3