Deep Q learning cloud task scheduling algorithm based on improved exploration strategy

Author:

Cheng Chenyu1,Li Gang2,Fan Jiaqing1

Affiliation:

1. School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, China

2. School of Mechanical and Control Engineering, Baicheng Normal University, Baicheng, Jilin, China

Abstract

In cloud computing, task scheduling is a critical process that involves efficiently allocating computing resources to fulfill diverse task requirements. To address issues such as unstable response times, extensive computations, and challenges in parameter adjustment faced by traditional task scheduling methods, an enhanced deep Q-learning cloud-task-scheduling algorithm was proposed. This algorithm utilizes deep reinforcement learning and introduces an improved strategy. The optimization of the objective function was achieved by defining the state space, action space, and reward function. The agent’s exploration capability was enhanced through the utilization of a UCB exploration strategy and Boltzmann action exploration. Simulation experiments were conducted using Pycloudsim. The average instruction response time ratio and standard deviation of CPU utilization were compared to measure the advantages and disadvantages of the algorithm. The results indicate that the proposed algorithm surpasses the random, earliest, and RR algorithms in terms of the instruction-to-response time ratio and CPU utilization, demonstrating enhanced efficiency and performance in cloud-task scheduling.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3