Internet street view image fusion method using convolutional neural network

Author:

Chen Jing,Wang Xiaoxuan,Wu Yujing

Abstract

The use of image fusion technology in the area of information processing is continuing to advance in depth thanks to ongoing hardware advancements and related research. An enhanced convolutional neural network approach is developed to fuse visible and infrared images, and image pre-processing is carried out utilising an image alignment method with edge detection in order to gain more accurate and trustworthy image information. The performance of the fast wavelet decomposition, convolutional neural network, and modified convolutional neural network techniques is compared and examined using four objective assessment criteria. The experimental findings demonstrated that the picture alignment was successful with an offset error of fewer than 3 pixels in the horizontal direction and an angle error of less than 0.3∘ in both directions. The revised convolutional neural network method increased the information entropy, mean gradient, standard deviation, and edge detection information by an average of 46.13%, 39.40%, 19.91%, and 3.72%. The runtime of the modified approach was lowered by 19.42% when compared to the convolutional neural network method, which enhanced the algorithm’s performance and boosted the effectiveness of picture fusion. The image fusion accuracy reached 98.61%, indicating that the method has better fusion performance and is of practical value for improving image fusion quality.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3