Affiliation:
1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, P.R. China
Abstract
Using server log data to predict the URLs that a user is likely to visit is an important research area in user behavior prediction. In this paper, a predictive model (called LAR) based on the long short-term memory (LSTM) attention network and reciprocal-nearest-neighbors supported clustering algorithm (RSC) for predicting the URL is proposed. First, the LSTM-attention network is used to predict the URL categories a user might visit, and the RSC algorithm is then used to cluster users. Subsequently, the URLs belonging to the same category are determined from the user clusters to predict the URLs that the user might visit. The proposed LAR model considers the time sequence of the user access URL, and the relationship between a single user and group users, which effectively improves the prediction accuracy. The experimental results demonstrate that the LAR model is feasible and effective for user behavior prediction. The accuracy of the mean absolute error and root mean square error of the LAR model are better than those of the other models compared in this study.