Enhancing 3D medical image registration with cross attention, residual skips, and cascade attention

Author:

Anwar Muhammad1,He Zhiquan2,Cao Wenming2

Affiliation:

1. College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China

2. Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China

Abstract

At the core of Deep Learning-based Deformable Medical Image Registration (DMIR) lies a strong foundation. Essentially, this network compares features in two images to identify their mutual correspondence, which is necessary for precise image registration. In this paper, we use three novel techniques to increase the registration process and enhance the alignment accuracy between medical images. First, we propose cross attention over multi-layers of pairs of images, allowing us to take out the correspondences between them at different levels and improve registration accuracy. Second, we introduce a skip connection with residual blocks between the encoder and decoder, helping information flow and enhancing overall performance. Third, we propose the utilization of cascade attention with residual block skip connections, which enhances information flow and empowers feature representation. Experimental results on the OASIS data set and the LPBA40 data set show the effectiveness and superiority of our proposed mechanism. These novelties contribute to the enhancement of 3D DMIR-based on unsupervised learning with potential implications in clinical practice and research.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3