Ultrasound breast images denoising using generative adversarial networks (GANs)

Author:

Jiménez-Gaona Yuliana123,Rodríguez-Alvarez María José2,Escudero Líder3,Sandoval Carlos3,Lakshminarayanan Vasudevan45

Affiliation:

1. Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador

2. Instituto de Instrumentacion Para la Imagen Molecular I3M,

3. Medihospital, Loja-Ecuador, Av. Eugenio Espejo y Shuaras 07 39 50 600, Ecuador

4. Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science,

5. Department of Systems Design Engineering, Physics, and Electrical and Computer Engineering,

Abstract

INTRODUCTION: Ultrasound in conjunction with mammography imaging, plays a vital role in the early detection and diagnosis of breast cancer. However, speckle noise affects medical ultrasound images and degrades visual radiological interpretation. Speckle carries information about the interactions of the ultrasound pulse with the tissue microstructure, which generally causes several difficulties in identifying malignant and benign regions. The application of deep learning in image denoising has gained more attention in recent years. OBJECTIVES: The main objective of this work is to reduce speckle noise while preserving features and details in breast ultrasound images using GAN models. METHODS: We proposed two GANs models (Conditional GAN and Wasserstein GAN) for speckle-denoising public breast ultrasound databases: BUSI, DATASET A, AND UDIAT (DATASET B). The Conditional GAN model was trained using the Unet architecture, and the WGAN model was trained using the Resnet architecture. The image quality results in both algorithms were measured by Peak Signal to Noise Ratio (PSNR, 35–40 dB) and Structural Similarity Index (SSIM, 0.90–0.95) standard values. RESULTS: The experimental analysis clearly shows that the Conditional GAN model achieves better breast ultrasound despeckling performance over the datasets in terms of PSNR = 38.18 dB and SSIM = 0.96 with respect to the WGAN model (PSNR = 33.0068 dB and SSIM = 0.91) on the small ultrasound training datasets. CONCLUSIONS: The observed performance differences between CGAN and WGAN will help to better implement new tasks in a computer-aided detection/diagnosis (CAD) system. In future work, these data can be used as CAD input training for image classification, reducing overfitting and improving the performance and accuracy of deep convolutional algorithms.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3