Floating-point histograms for exploratory analysis of large scale real-world data sets

Author:

Boullé Marc

Abstract

Histograms are among the most popular methods used in exploratory analysis to summarize univariate distributions. In particular, irregular histograms are good non-parametric density estimators that require very few parameters: the number of bins with their lengths and frequencies. Although many approaches have been proposed in the literature to infer these parameters, most existing histogram methods are difficult to exploit for exploratory analysis in the case of real-world data sets, with scalability issues, truncated data, outliers or heavy-tailed distributions. In this paper, we focus on the G-Enum histogram method, which exploits the Minimum Description Length (MDL) principle to build histograms without any user parameter. We then propose to extend this method by exploiting a new modeling space based on floating-point representation, with the objective of building histograms resistant to outliers or heavy-tailed distributions. We also suggest several heuristics and a methodology suitable for the exploratory analysis of large scale real-world data sets, whose underlying patterns are difficult to recover for digitization reasons. Extensive experiments show the benefits of the approach, evaluated with a dual objective: the accuracy of density estimation in the case of outliers or heavy-tailed distributions, and the effectiveness of the approach for exploratory data analysis.

Publisher

IOS Press

Reference32 articles.

1. Density estimation by stochastic complexity;Rissanen;IEEE Transactions on Information Theory,1992

2. P. Kontkanen and P. Myllymäki, MDL Histogram Density Estimation, in: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, M. Meila and X. Shen, eds, Proceedings of Machine Learning Research, Vol. 2, PMLR, 2007, pp. 219–226.

3. Densities, spectral densities and modality;Davies;Ann. Statist.,2004

4. Combining regular and irregular histograms by penalized likelihood;Rozenholc;Computational Statistics and Data Analysis,2010

5. Studies in astronomical time series analysis. vi. bayesian block representations;Scargle;The Astrophysical Journal,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3