MAFormer: A cross-channel spatio-temporal feature aggregation method for human action recognition

Author:

Huang Hongbo12,Xu Longfei1,Zheng Yaolin1,Yan Xiaoxu1

Affiliation:

1. Computer School, Beijing Information Science & Technology University, Beijing, China

2. Institute of Computing Intelligence, Beijing Information Science & Technology University, Beijing, China

Abstract

Human action recognition has been widely used in fields such as human–computer interaction and virtual reality. Despite significant progress, existing approaches still struggle with effectively integrating hierarchical information and processing data beyond a certain frame count. To address these challenges, we introduce the Multi-AxisFormer (MAFormer) model, which is organized in terms of spatial, temporal, and channel dimensions of the action sequence, thereby enhancing the model’s understanding of correlations and intricate structures among and within features. Drawing on the Transformer architecture, we propose the Cross-channel Spatio-temporal Aggregation (CSA) structure for more refined feature extraction and the Multi-Axis Attention (MAA) module for more comprehensive feature aggregation. Moreover, the integration of Rotary Position Embedding (RoPE) boosts the model’s extrapolation and generalization abilities. MAFormer surpasses the known state-of-the-art on multiple skeleton-based action recognition benchmarks with the accuracy of 93.2% on NTU RGB+D 60 cross-subject split, 89.9% on NTU RGB+D 120 cross-subject split, and 97.2% on N-UCLA, offering a novel paradigm for hierarchical modeling in human action recognition.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3