Performance Improvement in single-gate organic transistors with contacts at top and bottom: Additional p + region insertion near source and drain

Author:

Gupta Sakshi1,Mittal Poornima2,Juneja Pradeep1

Affiliation:

1. Department of Electronics and Communication Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

2. Department of Electronics and Communication Engineering, Delhi Technological University, New Delhi, India

Abstract

This research explores performance attributes of bottom gate top contact (BGTC) and bottom gate bottom contact (BGBC) organic thin film transistors (OTFT). To upgrade the performance characteristics, a region of 5nm with high concentration of carrier is tallied neighboring contacts. The drain current for BGTC is –18.6μ A as compared to –5.1μ A of BGBC transistor. Also, it is established that the innate attributes of BGTC are better than those of their counterparts, which is typically considered because of the inadequate contact attributes and mediocre semiconductor quality of BGBC OTFT. The analysis showed that upon varying the length of the channel ranging from 5μm to 40μm, there was a significant change in the drain current of BGTC and BGBC devices. For the same values of V GS and V DS (0V to –5V) where drain current in BGTC structure varied from –129.86μ A to –13.69μ A, whereas for their counterparts it ranged from –37.10μ A to –3.76μ A for channel length equal to 5μ m and 40μ m respectively. Also, with the varying doping strength ranging from 1012 cm–3 to 1016 cm–3 for BGBC device, drain current varied from –2.15μ A to –18.52μ A for BGTC whereas for BGBC it varied from –0.19μ A to –7.09μ A keeping V GS and V DS –5 V, yielding that upon varying the doping strength, where for BGTC I D changed by a factor of 8.6, the BGBC device showed a considerable change by a factor of 37.3. Likewise, mobility, threshold voltage, sub-threshold swing and transconductance also showing better performance with the P + insertion. These variations in the innate attributes are primarily due to the deficiency of carriers at the interface of source and channel, leading to a greater drop in the potential, which is more prominent for the bottom gate bottom contact devices.

Publisher

IOS Press

Subject

Materials Chemistry,Inorganic Chemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3