Feature Extraction of Time-Series Data Using DWT and FFT for Ballscrew Condition Monitoring

Author:

Alegeh Nurudeen1,Thottoli Munavar1,Mian Naeem1,Longstaff Andrew1,Fletcher Simon1

Affiliation:

1. Centre for Precision Technologies, University of Huddersfield, Huddersfield, HD1 3DH, UK

Abstract

This paper investigates the use of the discrete wavelet transform (DWT) and Fast Fourier Transform (FFT) to improve the quality of extracted features for machine learning. The case study in this paper is detecting the health state of the ballscrew of a gantry type machine tool. For the implementation of the algorithm for feature extraction, wavelet is first applied to the data, followed by FFT and then useful features are extracted from the resultant signal. The extracted features were then used in various machine learning algorithms like decision tree, K-nearest neighbour (KNN) and support vector machine (SVM) for binary classification of the ballscrew state. The result shows significant improvement in the classification accuracy after the wavelet transform and FFT has been performed on the data.

Publisher

IOS Press

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3