Numerical investigation on redundancy of bridges with AASHTO I-girders

Author:

Alotaibi Emran12,Nassif Nadia12,Alhalabi Mohamad1,Al Sebai Humam12,Barakat Samer1

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates

2. Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates

Abstract

Bridge safety is one of the most critical concerns among civil engineering fields due to its high importance. The redundancy of bridges was heavily investigated in the literature; however, they were focused on twin girder redundancy cases. Additionally, literatures were scarce in studies that focused on the improvement that should be made to achieve redundancy systems in different AASHTO I-girder types. Thus, this study focused on assessing the additional required number of tendons for different AASHTO I-girder types and spacing between them to achieve the redundancy of I-girder bridges. The additional unbonded tendons are suggested to be added externally or internally. The parameters varied in this study are compressive strength of ultrahigh-performance concrete (UHPC), spacing between girders (i.e. number of girders) and type of girders. Leap Bridge Concrete software was used to simulate the required structural modes. After performing extensive numerical analyses following AASHTO LRFD guidelines, the results have shown that in case of the removal of external I-girder, the tendons in the nearest girder need to be nearly increased by 1.85 to 2.3 times compared to the original design, depending on spacing, compressive strength, and the number of girders. On the other hand, in the case of interior girder removal, the number of tendons in the nearest two girders need to be increased by 1.24 to 1.32 times the original design. The effect of compressive strength variation of the used UHPC was negligible compared to spacing and type of girder. It is worth mentioning that all simulations in this study were verified using CSI Bridge software.

Publisher

IOS Press

Subject

Building and Construction

Reference23 articles.

1. Precast/Prestressed Concrete Institute (PCI). PCI bridge design manual, Chicago; 2003.

2. Numerical study on post-fracture redundancy of the two-girder steel-concrete composite highway bridges;Lin;International Journal of Steel Structures,2013

3. Code of Federal Regulations. 23 CFR 650 - Bridges, Structures and Hydraulics; 2008.

4. Heang LA . Redundancy Evaluation of Steel-Concrete Composite Twin I-Girder Bridges; 2017.

5. ASCE-AASHTO Task Committee. State if the Art Report on Redundant Bridge Systems. ASCE Journal of Structural Engineering. 1985;111(12).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3