Magnetic memory testing towards fatigue crack propagation of Q235 steel for remanufacturing

Author:

Ye Jianhua1,Guo Ze1,Zeng Shoujin1,Xu Mingsan1

Affiliation:

1. School of Mechanical and Automotive Engineering, Fujian University of Technology, , China

Abstract

A crack propagation trial was performed on a Q235 steel M(T) sample to investigate the modifications in magnetic memory signals throughout the crack propagation procedure of ferromagnetic substances. Various detection lines were employed to gather and scrutinize magnetic memory signals under two-stage fatigue loading. The interrelation between the gradient value Kmax, the peak-to-peak value SP−Py, the stress intensity factor Ka, the extension of the sample 𝜀, crack length a, and the cyclic N was established. The findings indicate that the Hp(y) curves present a varied peak at the crack tip and in the notch, whereas the Hp(x) curve is linear. The magnetic signals display similar changes during two-stage fatigue loading, but the post-break state deviates. The fatigue process’s SP−Py shows three phases of fluctuation, escalation, and decline. Throughout the period of fatigue crack growth, Kmax and 𝜀 rise exponentially, Ka ascends linearly, and a shows linear changes. The characteristics of magnetic memory signals can measure harm after varying service periods and offer robust foundations for remanufacturing.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3