Multi-objective optimization of permanent magnet motors using deep learning and CMA-ES

Author:

Mikami Ryosuke1,Sato Hayaho1,Hayashi Shogo1,Igarashi Hajime1

Affiliation:

1. , Hokkaido University, , Japan

Abstract

This paper proposes a multi-objective optimization method for permanent magnet motors using a fast optimization algorithm, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and deep learning. Multi-objective optimization with topology optimization is effective in the design of permanent magnet motors. Although CMA-ES needs fewer population size than genetic algorithm for single objective problems, this is not evident for multi-objective problems. For this reason, the proposed method generates training data by solving the single-objective optimization multiple times using CMA-ES, and constructs a deep neural network (NN) based on the data to predict performance from motor images at high speed. The deep NN is then used for fast solution of multi-objective optimization problems. Numerical examples demonstrate the effectiveness of the proposed method.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference9 articles.

1. Multimaterial topology optimization of electric machines based on normalized Gaussian network;Sato;IEEE Trans. Magn.,2015

2. Topology optimization of synchronous reluctance motor using normalized Gaussian network;Sato;IEEE Trans. Magn.,2015

3. Novel hybridization of parameter and topology optimizations: application to permanent magnet motor;Hiruma;IEEE Trans. Magn.,2021

4. Parameter-topology hybrid optimization of electric motor with multiple permanent magnets;Hayashi;Int. J. Appl. Electromag. Mech.,2022

5. A fast and elitist multiobjective genetic algorithm: NSGA-II;Deb;IEEE Trans. Evolutionary Computation,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3