Study on fluid friction loss on rotor surface of FeCo based high speed permanent magnet motor

Author:

Hou Peng1,Ge Baojun1,Tao Dajun1,Pan Bo1,Zhao Liping1

Affiliation:

1. , , Harbin University of Science and Technology, , China

Abstract

The linear speed of the rotor surface of high speed permanent magnet motor (HSPMM) is as high as 100 m/s, and the air friction loss on the rotor surface is much higher than that of ordinary motors, accounting for a large proportion of the total loss, and the actual air friction loss on the rotor surface is much higher than that of ordinary motors. It is extremely difficult to directly measure and verify the size of the rotor surface. At the same time, the air friction loss on the rotor surface is related to various factors such as motor speed, air gap structure and rotor surface roughness. It is difficult to accurately calculate through theoretical analysis and analytical methods. Based on the 3D fluid field physical model, this paper analyzes the relationship between the rotor air friction loss of FeCo based HSPMM and the rotor speed, rotor geometry, surface roughness and axial wind speed. Based on HSPMM, the calculation and test method of rotor surface air friction loss are studied. Through the FeCo based HSPMM no-load test, according to the relationship between the rotor air friction loss and other losses and the motor speed, the rotor surface air friction loss can be separated from the total loss. The experimental results are consistent with the calculated values, indicating that the HSPMM rotor air friction loss calculation method based on 3D fluid field analysis is effective.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference21 articles.

1. Power loss and thermal analysis for high power high speed permanent magnet machines;Du;IEEE Transactions on Industrial Electronics,2020

2. Power loss and thermal analysis of a MW high speed permanent magnet synchronous machine;Zhang;IEEE Trans. Energy Convers.,2017

3. Design of cryogenic induction motor submerged in liquefied natural gas;Kim;IEEE Transactions on Magnetics

4. Rotor strength analysis of FeCo-based permanent magnet high speed motor;Hou;Machines,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3