Design and simulation of a superconducting machine excitation system taking into account the three-dimensional magnetic leakage

Author:

Chen Chen1,Zhang Wenfeng1

Affiliation:

1. School of Automation and Artificial Intelligence, , , , China

Abstract

The optimized design of a new high-temperature superconducting rotating pole machine is presented. Its main structural feature is the use of a double stator core which separates the synchronous machine pole shoe from the pole body to rotate separately as the machine rotor, allowing the superconducting coil to operate in a stationary state. The inner stator core, the stationary dewar and the rotor core together form the excitation system of the machine. The excitation coil windings adopt a rectangular cross-section, with flux divertor strategically placed between the high-temperature superconducting coils. This configuration aims to modulate the background magnetic field, specifically reducing the perpendicular magnetic field component. This mitigation minimizes the impact of ambient magnetic fields on the superconducting coil’s current carrying capacity, ensuring an optimized magnetic field environment for its operation. Through the integration of these modifications, the technical and economic parameters of the enhanced high-temperature superconducting machine have been significantly improved. The optimization of design, coupled with detailed calculations of the 3D electromagnetic field, was achieved utilizing the commercial software Ansys EM module.

Publisher

IOS Press

Reference18 articles.

1. Design of a novel torque tube for a direct-drive superconducting wind generator;Fang;IEEE Transactions on Applied Superconductivity,2015

2. HTS axial flux permanent magnets electrical machine prototype: design and test results;Messina;IEEE Transactions on Applied Superconductivity,2019

3. Analysis of the strain and stress in the HTS generator at different operating conditions;Zhang;IEEE Transactions on Applied Superconductivity,2017

4. Current status and development prospects of superconducting materials and their applications;Ye;China Industry and Information Technology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3