Towards counterfactual explanations for ontologies

Author:

Bellucci Matthieu1,Delestre Nicolas1,Malandain Nicolas1,Zanni-Merk Cecilia1

Affiliation:

1. INSA Rouen Normandie, Univ Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000, Rouen, France

Abstract

Debugging and repairing Web Ontology Language (OWL) ontologies has been a key field of research since OWL became a W3C recommendation. One way to understand errors and fix them is through explanations. These explanations are usually extracted from the reasoner and displayed to the ontology authors as is. In the meantime, there has been a recent call in the eXplainable AI (XAI) field to use expert knowledge in the form of knowledge graphs and ontologies. In this paper, a parallel between explanations for machine learning and for ontologies is drawn. This link enables the adaptation of XAI methods to explain ontologies and their entailments. Counterfactual explanations have been identified as a good candidate to solve the explainability problem in machine learning. The CEO (Counterfactual Explanations for Ontologies) method is thus proposed to explain inconsistent ontologies using counterfactual explanations. A preliminary user study is conducted to ensure that using XAI methods for ontologies is relevant and worth pursuing.

Publisher

IOS Press

Reference26 articles.

1. Finding Small Proofs for Description Logic Entailments: Theory and Practice

2. C. Alrabbaa, S. Borgwardt, T. Friese, P. Koopmann, J. Méndez and A. Popovič, On the eve of true explainability for OWL ontologies: Description logic proofs with Evee and Evonne, Proc. DL 22 (2022).

3. M.-R. Amini and E. Gaussier, Recherche d’information: Applications, modèles et algorithmes-Fouille de données, décisionnel et big data, Editions Eyrolles, 2013.

4. Gene ontology: Tool for the unification of biology;Ashburner;Nature Genetics,2000

5. Combining an explainable model based on ontologies with an explanation interface to classify images;Bellucci;Procedia Computer Science,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3