Affiliation:
1. Departamento de Matemática, Universidade Federal de Sergipe, São Cristóvão SE 49100-000, Brazil. E-mail: wilberclay@gmail.com
2. Campus Clóvis Moura, Universidade Estadual do Piauí, Teresina PI 64078-213, Brazil. E-mail: natafirmino@ccm.uespi.br
3. Departamento de Matemática Pura e Aplicada, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil. E-mail: zingano@mat.ufrgs.br
Abstract
This work guarantees the existence of a positive instant t = T and a unique solution ( u , w ) ∈ [ C ( [ 0 , T ] ; H a , σ s ( R 2 ) ) ] 3 (with a > 0, σ > 1, s > 0 and s ≠ 1) for the micropolar equations. Furthermore, we consider the global existence in time of this solution in order to prove the following decay rates: lim t → ∞ t s 2 ‖ ( u , w ) ( t ) ‖ H ˙ a , σ s ( R 2 ) 2 = lim t → ∞ t s + 1 2 ‖ w ( t ) ‖ H ˙ a , σ s ( R 2 ) 2 = lim t → ∞ ‖ ( u , w ) ( t ) ‖ H a , σ λ ( R 2 ) = 0 , ∀ λ ⩽ s . These limits are established by applying the estimate ‖ F − 1 ( e T | · | ( u ˆ , w ˆ ) ( t ) ) ‖ H s ( R 2 ) ⩽ [ 1 + 2 M 2 ] 1 2 , ∀ t ⩾ T , where T relies only on s , μ , ν and M (the inequality above is also demonstrated in this paper). Here M is a bound for ‖ ( u , w ) ( t ) ‖ H s ( R 2 ) (for all t ⩾ 0) which results from the limits lim t → ∞ t s 2 ‖ ( u , w ) ( t ) ‖ H ˙ s ( R 2 ) = lim t → ∞ ‖ ( u , w ) ( t ) ‖ L 2 ( R 2 ) = 0.
Reference28 articles.
1. On the exponential type explosion of Navier–Stokes equations;Benameur;Nonlinear Anal.,2014
2. J. Benameur and L. Jlali, Long time decay for 3D Navier–Stokes equations in Sobolev–Gevrey spaces, Electron. J. Differential Equations 2016 (2016), 104.
3. On the blow-up criterion of 3D-NSE in Sobolev–Gevrey spaces;Benameur;J. Math. Fluid Mech.,2016
4. On the blow-up criterion of 3D Navier–Stokes equation in H ˙ 5 2;Benameur;Math. Methods Appl. Sci.,2019
5. Magneto-micropolar fluid motion: Existence of weak solutions;Boldrini;Rev. Mat. Complut.,1998
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献