On the behavior of least energy solutions of a fractional ( p , q ( p ) )-Laplacian problem as p goes to infinity

Author:

Ercole Grey1,Medeiros Aldo H.S.1,Pereira Gilberto A.2

Affiliation:

1. Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30.123-970, Brazil. E-mails: grey@mat.ufmg.br, aldomedeiros@ufmg.br

2. Universidade Federal de Ouro Preto, Ouro Preto, MG, 35.400-000, Brazil. E-mail: gilberto.pereira@ufop.edu.br

Abstract

We study the behavior as p → ∞ of u p , a positive least energy solution of the problem [ ( − Δ p ) α + ( − Δ q ( p ) ) β ] u = μ p | u ( x u ) | p − 2 u ( x u ) δ x u in  Ω u = 0 in  R N ∖ Ω | u ( x u ) | = ‖ u ‖ ∞ , where Ω ⊂ R N is a bounded, smooth domain, δ x u is the Dirac delta distribution supported at x u , lim p → ∞ q ( p ) p = Q ∈ ( 0 , 1 ) if  0 < β < α < 1 ( 1 , ∞ ) if  0 < α < β < 1 and lim p → ∞ μ p p > R − α , with R denoting the inradius of Ω.

Publisher

IOS Press

Subject

General Mathematics

Reference18 articles.

1. Asymptotic behavior as p → ∞ of least energy solutions of a ( p , q ( p ) )-Laplacian problem;Alves;Proc. Roy. Soc. Edinburgh Sect. A,2018

2. T. Bhatthacharya, E. DiBenedetto and J. Manfredi, Limits as p → ∞ of Δpup = f and related extremal problems, in: Rendiconti del Sem. Mat., Fascicolo Speciale Non Linear PDE’s, Univ. Torino, 1989, pp. 15–68.

3. Existence of nonnegative viscosity solutions for a class of problems involving the $${\infty}$$-Laplacian

4. The fractional Cheeger problem;Brasco;Interfaces Free Bound.,2014

5. A Hölder infinity Laplacian;Chambolle;ESAIM Control Optim. Calc. Var.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the limiting problems for two eigenvalue systems;Journal of Mathematical Analysis and Applications;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3