Prediction of thrust bearing’s performance in Mixed Lubrication regime

Author:

Katsaros Konstantinos P.,Nikolakopoulos Pantelis G.

Abstract

A hydrodynamic thrust bearing could be forced to operate in mixed lubrication regime under various circumstances. At this state, the tribological characteristics of the bearing could be affected significantly and the developed phenomena would have a severe impact on the performance of the mechanism. Until recently, researchers were modeling the hydrodynamic lubrication problem of the thrust bearings either with analytical or with numerical solutions. The analytical solutions are very simple and do not provide enough accuracy in describing the actual problem. To add to that, following only computational methodologies, can lead to time consuming and complex algorithms that need to be repeated every time the operating conditions change, in order to draw safe conclusions. Recent technological advances, especially on the field of computer science, have provided tools that enhance and accelerate the modeling of thrust bearings’ operation. The aim of this study is to examine the application of Artificial Neural Networks as Machine Learning models, that are trained to predict the coefficient of friction for lubricated pad thrust bearings in mixed lubrication regime. The hydrodynamic analysis of the thrust bearing is performed by solving the Average 2-D Reynolds equation numerically. In order to describe the roughness of the profiles, both the flow factors suggested by N. Patir and H.S. Cheng (1978) and the model of J.A. Greenwood and J. H. Tripp (1970) are taken into consideration. Three lubricants, the SAE 0W30, the SAE 10W40 and the SAE 10W60, are tested and compared for a variety of operating velocities and applied coatings. The numerical analysis results are used as training datasets for the machine learning algorithms. Four different ML methods are applied in this investigation: Artificial Neural Networks (ANNs), Multi- Variable Quadratic Polynomial Regression, Quadratic SVM and Regression Trees. The coefficient of determination, R2 is calculated and used to determine the most accurate ML method for the current study. The results showed that ANNs provide very good accuracy in the prediction of friction coefficient compared to the rest of the ML models discussed.

Publisher

IOS Press

Reference50 articles.

1. Load-responsive hydrodynamic bearing for downhole drilling tools;Kalsi;Journal of Tribology,2007

2. Polycrystalline diamond thrust bearing testing and qualification for application in marine hydrokinetic machines;Lingwall;American Society of Mechanical Engineers, Tribology Division, TRIB,2012

3. Stability analysis of rubber-supported thrust bearing in a rotor-bearing system used in marine thrusters under disturbing moments;Sun;Tribology International,2020

4. Improving tribological performance of mechanical components by laser surface texturing;Etsion;Tribology Letters,2004

5. Wear-in behaviour of polycrystalline diamond thrust bearings;Knuteson;Wear,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3