Iterated shape-bias graph cut with application to ellipse segmentation

Author:

Sun Xin1,Li Dong2,Wang Wei1,Yao Hongxun1,Xu Dongliang2,Du Zhanwei3,Sun Mingui4

Affiliation:

1. Department of Computer Science and Technology, Harbin Institute of Technology, China

2. School of Mechanical, Electrical and Information Engineering, Shandong University, China

3. Department of Integrative Biology, University of Texas at Austin, USA

4. University of Pittsburgh, Pittsburgh, PA, USA

Abstract

 We present a novel graph cut method for iterated segmentation of objects with specific shape bias (SBGC). In contrast with conventional graph cut models which emphasize the regional appearance only, the proposed SBGC takes the shape preference of the interested object into account to drive the segmentation. Therefore, the SBGC can ensure a more accurate convergence to the interested object even in complicated conditions where the appearance cues are inadequate for object/background discrimination. In particular, we firstly evaluate the segmentation by simultaneously considering its global shape and local edge consistencies with the object shape priors. Then these two cues are formulated into a graph cut framework to seek the optimal segmentation that maximizing both of the global and local measurements. By iteratively implementing the optimization, the proposed SBGC can achieve joint estimation of the optimal segmentation and the most likely object shape encoded by the shape priors, and eventually converge to the candidate result with maximum consistency between these two estimations. Finally, we take the ellipse shape objects with various segmentation challenges as examples for evaluation. Competitive results compared with state-of-the-art methods validate the effectiveness of the technique.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference2 articles.

1. Shape similarity measure based on correspondence of visual parts;Latecki;IEEE Trans. PAMI,2000

2. Interactive image segmentation via adaptive weighted distances;Protiere;IEEE Trans. IP,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3