A novel hybrid improved hunger games search optimizer with extreme learning machine for predicting shrinkage of SLS parts

Author:

Zhang Yapeng1,Guo Yanling1,Xiao Yaning1,Tang Wenxiu1,Zhang Haoyu1,Li Jian1

Affiliation:

1. Northeast Forestry University, College of Mechanical and Electrical Engineering, Harbin, China

Abstract

The material constriction is one of the important factors that influence the forming accuracy of selective laser sintering (SLS). Currently, in order to reduce the shrinkage and improve the quality of products, the optimal combination of machining process parameters is mainly determined by numerous experiments. This often takes valuable time and costs a lot, but the results are mediocre. With the development of intelligent optimization algorithms, they are applied in various disciplines for solving complex problems. Hence, for reducing the shrinkage of parts and overcoming the limitation in the optimization of the process parameters, this paper proposes a novel hybrid improved Hunger Games Search algorithm (HGS) with extreme learning machine (ELM) model for predicting the shrinkage of parts. Firstly, the orthogonal experiments were conducted based on the five key process parameters, the obtained parts datasets were divided into the training set and test set. Secondly, the Cube mapping and refracted opposition-based learning strategies are adopted to increase the convergence speed and solution accuracy of HGS. In addition, the regression prediction model was constructed with the improved HGS(IHGS) and ELM, and this model is trained using the training set. Finally, the test set is used to evaluate the trained model and find the optimal combination of process parameters with the lowest shrinkage of parts. The experimental results suggest that the IHGS-ELM model proposed in this study has high forecasting precision, with the R2 and RMSE are only 0.9124 and 0.2433, respectively. This model can guide the laser sintering process of polyether sulfone (PES) powder.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3